上級バイオ技術者認定試験 分野別ガイドライン

(2023年3月改訂)

核酸・タンパク質

分野	項目	内容	+	フード
分子生物学	核酸化学	核酸の基本的な 構造 DNA・RNA	□塩基 (プリン体、ピリミジン体) □ウラシル □アデニン □グアニン □チミン □リボース □リボース □リボヌクレオシド □リボヌクレオチド □直鎖状 DNA □閉環状 DNA (cccDNA) □開環状 DNA (ocDNA) □DNA 超らせん構造 □ヘアピン構造 (二次構造) □クローバー様構造 (tRNA) □核酸の変性 (熱、アルカリ)	□デオキシリボース □デオキシリボヌクレオシド □デオキシリボヌクレオチド □ 5'-デオキシリボヌクレオチド □ 5'-デオキシリボヌクレオシバ三リン酸 (5'-dNTP) □ホスホジエステル結合 □水素結合 □相補性 □二重らせん(A型、B型、Z型) □融解温度(Tm値) □アニーリング □ハイブリダイゼーション □アンチセンス RNA □リボザイム □ RNA ワールド □ DNA ワールド
2学	ゲノム	クロマチンと染色体	□ 姉妹染色分体 □ 常染色体 □ 性染色体 (X 染色体、Y 染色体) □ セントロメア □ 長腕 (q 腕) □ 短腕 (p 腕) □ テロメア □ 有糸分裂 □ 減数分裂 □ 体細胞分裂 □ 紡錘糸 □ 核膜 □ 核様体 □ チューブリン □ コンデンシン	□コヒーシン □クロマチン □ユークロマチン □スクレオソーム □塩基性タンパク質 □ヒストン (ヒストン八量体) □非ヒストンタンパク質 □エピジェネティクス □ゲノムインプリンティング (遺伝子刷り込み) □DNA のメチル化 (CpG 部位) □ヒストンアセチル化 □ヒストンメチル化

分野	項目	内容	‡-r	フード
	ゲノム	ゲノムDNAと遺伝 子多型	□ ゲノム □ 半数体 □ 半数体 □ ミトコンドリア DNA(mtDNA) □ 葉緑体 DNA(cpDNA) □ 転移性遺伝因子(可動性遺伝因子) □ トランスポゾン □ レトロポゾン(レトロトランスポゾン) □ 相同組換え(homologous recombination) □ 交叉(crossing over) □ 遺伝子変換(gene conversion) □ コーディング領域 □ ジャンク DNA □ イントロン □ エキソン □ 偽遺伝子 □ 反復配列 □ ミニサテライト DNA	□ Alu ファミリー □遺伝子型 □ ハプロタイプ □ アロタイプ □ DNA 多型(遺伝子多型) □ 制限断片長多型(RFLP) □ PCR-RFLP □ 一塩基多型(SNP、SNPs) □ 一本鎖立体構造多型、SSCP、single-strand conformation polymorphism) □ 連鎖解析 □ DNA 鑑定 □ DNA フィンガープリント法(DNA フィンガープリンティング) □ 染色体歩行 □遺伝子マッピング □ ポジショナルクローニング
分子生物学		DNA複製	□ DNA 複製 □ 半保存的複製 □ DNA ポリメラーゼ(I、II、III) □ プライマーゼ □ RNA プライマー □ 複製フォーク □ DNA ヘリカーゼ □トポイソメラーゼ I □ 一本鎖結合タンパク質(SSB)	□ テロメア □ テロメラーゼ □ 不連続的複製 □ ラギング鎖 □ リーディング鎖 □ 岡崎フラグメント □ レプリコン □ DnaB □ RecA
	複製と変異	DNAの損傷・修復・ 変異	□ 突然変異 □ 点突然変異 □ 点突然変異 □ 塩基消失(塩基欠失、ヌクレオチド欠失) □ 欠失変異 □ 塩基系入(ヌクレオチド挿入) □ 挿入変異 □ 類似塩基の取り込み □ ミスセンス変異 □ ナンセンス変異 □ フレームシフト変異 □ サイレント変異 □ サプレッサー変異 □ プルーフリーディング(校正) □ SOS 応答(修復)	□ 複製後修復(組換え修復) □ 塩基除去修復(ヌクレオチド除去修復) □ ミスマッチ修復 □ 末端再結合修復(末端連結修復) □ 一本鎖切断の修復 □ 二本鎖切断の修復 □ 光回復 □ 脱アミノ化 □ 塩基のメチル化 □ 塩基のメチル化 □ 塩基のカメチル化 □ 塩基のカッチルイと □ ブレオマイシン □ アルキル化 □ アクリジン色素

核酸・タンパク質

分野	項目	内容	‡_r	
71 21	ベロ	1 1 1 1	·	
分子生物学	遺伝子発現	転写調節と転写後修飾	□ オペロン □ シストロン(モノシストロン、ポリシストロン) □ コード領域(配列) □ プロモーター □ コンセンサス配列 □ プリブナウボックス(-10 配列) □ -35 配列 □ TATA ボックス □ イニシエーター □ オペレーター □ エンハンサー □ アテニュエーター □ ターミネーター □ アクチベーター(転写活性化因子) □ 基本転写因子 □ 転写調節因子 □ 核内受容体 □ DNA 結合ドメイン □ リプレッサー □ の因子 □ 転写開始因子 □ 転写開始因子	□ RNA ポリメラーゼ III □ 大腸菌コアポリメラーゼ □ 転写活性化ドメイン □ ρ因子 □ 転写終結因子 □ 一次転写産物 □ hnRNA(ペテロ核 RNA) □ mRNA(成熟 mRNA) □ rRNA □ tRNA □ tRNA □ 転写後修飾 □ キャップ構造付加 □ 7-メチルグアノシン □ ポリアデニル酸(ポリ(A)) □ プロセシング □ スプライシング □ スプライシング □ オナンン □ RNA エディティング □ ボリ(A) ポリメラーゼ □ スプライソソーム □ 核内低分子 RNA(snRNA) □ hnRNP 複合体(ペテロ核 RNA-
		タンパク質の生合成	□ RNA ポリメラーゼ I □ RNA ポリメラーゼ II □ 核小体 □ リーダー配列 □ シャイン・ダルガーノ配列(SD 配列) □ コザックのコンセンサス配列 (Kozak 配列) □ コドン □ 開始コドン(AUG、GUG、AUA、UUG) □ メチオニン、N-ホルミルメチオニン、バリン、イソロイシン、ロイシン □ 終止コドン(UGA、UAG、UAA) □ フレーム □ 開始因子 □ 伸張因子 □ 遊離因子	タンパク質複合体) 核膜孔 リボソーム 小サブユニット (リボソーム) 大サブユニット (リボソーム) 18S rRNA 28S rRNA 5.8S rRNA 5S rRNA 16S rRNA 16S rRNA 23S rRNA ポリソーム (ポリリボソーム) tRNA アンチコドン アミノアシル tRNA Met-tRNA Met-tRNA

分野	項目	内容	+	フード
	核酸の修飾と増幅	遺伝子工学で汎用される酵素	□ DNA 分解酵素 □ エキソヌクレアーゼ □ エンドヌクレアーゼ □ 制限酵素 (restriction enzyme) □ RNA 分解酵素 □ リボヌクレアーゼ (リボヌクレアーゼ H) □ S1 ヌクレアーゼ □ DNA 依存 DNA ポリメラーゼ □ クレノウ酵素 (Klenow 酵素、DNA ポリメラーゼ I ラージフラグメント) □ 耐熱性 DNA ポリメラーゼ (<i>Taq</i> DNA ポリメラーゼ) □ T4DNA ポリメラーゼ	□逆転写酵素(RT、reverse transcriptase) □ RNA 依存 DNA ポリメラーゼ □ DNA リガーゼ(T4DNA リガーゼ) □ ターミナルデオキシヌクレオチジルト ランスフェラーゼ(TdT) □ T4 ポリヌクレオチドキナーゼ(T4 Polynucreotide kinase) □ アルカリホスファターゼ(脱リン酸 化酵素) □ BAP(Bacterial Alkaline Phosphatase) □ CIAP(Calf Intestine Alkaline Phosphatase、CIP)
遺石		DNAの増幅法と 関連技術	□ PCR (Polymerase Chain Reaction) □ 鋳型 DNA □ 合成プライマー(オリゴヌクレオチド) □ リアルタイム PCR □ 定量 PCR □ RT-PCR	□塩基配列決定法(サイクルシークエンシング法)□部位特異的変異導入法□インバース PCR 法□カセット変異導入法□ DNA/RNA 合成装置□ホスホロアミダイト法
遺伝子工学	検出技術	DNA・RNA の基本 的な検出法	□ 紫外部吸収法 □ ハイブリダイゼーション(雑種形成) □ サザンブロット法 □ ノーザンブロット法 □ in situ ハイブリダイゼーション □ 蛍光標識プローブ □ ビオチン標識プローブ □ DIG 標識プローブ(ジゴキシゲニン標識プローブ)	□末端標識法 □ニックトランスレーション法 □ DNA シークエンシング □ジデオキシ法(サンガー法) □マクサム・ギルバート法 □インターカレーター □臭化エチジウム(エチジウムブロミド) □ SYBR Green(サイバーグリーン)
		抗体を用いた検出法など	□ サンドイッチ法 □ ビオチン・ストレプトアビジン法 □ 酵素抗体法 □ 蛍光抗体法 □ イムノブロット法 □ ウェスタンブロット法	□ 酵素免疫測定 □ ELISA (エンザイムイムノアッセイ、EIA、enzyme-linked immunosorbent assay) □ ラジオイムノアッセイ(RIA)
	遺伝子解析技術	ゲノムDNAの解析	□ DNA マーカー□連鎖解析□遺伝子マッピング□遺伝子地図□染色体歩行□ ポジショナルクローニング□ DNA 鑑定	 □比較ゲノムハイブリダイゼーション □ DNA フィンガープリンティング □マーカー遺伝子 □染色体ソーティング □染色体切断装置 □フローサイトメトリー

核酸・タンパク質

		クノハノ貝		
分野	項目	内容	+	フード
	遺伝子解析技術	遺伝子の発現解析	□レポーター遺伝子アッセイ(レポータージーンアッセイ) □ルシフェラーゼ □クロラムフェニコールトランスフェラーゼ(CAT) □β-グルクロニダーゼ(GUS) □β-ガラクトシダーゼ(LacZ) □GFP(緑色蛍光タンパク質) □RT-PCR □リアルタイム RT-PCR(定量 RT-PCR) □マイクロアレイ	□ DNA チップ □ S1 マッピング □ EMSA 法(ゲルシフト法) □ サウスウェスタンブロット法 □ ディファレンシャルスクリーニング(ディファレンシャルディスプレイ) □ cDNA ライブラリー □ RNAi(RNA 干渉) □ ゲルシフト法 □ プロモーター解析 □ 発現変動遺伝子解析
遺伝子工学	組換え実験	組換え実験の基礎	□プラスミド □コスミド □プロファージ □ファージ □アデノウイルスベクター □レトロウイルス DNA □ ColE1 系プラスミド □ M13 ファージベクター □ SV40 □ Ti プラスミド □ BAC □ YAC □ HAC	□ λファージ □ フォスミド □ 自律複製配列(ARS) □ 選択マーカー □ ライブラリー作製 □ クローニング □ ショットガンクローニング □ cDNA ライブラリー □ ゲノム DNA ライブラリー □ ポジショナルクローニング □ 遺伝子導入法 □ 発現系の構築 □ 宿主 - ベクター系
	験	組換え実験の利用	□融合タンパク質 □タグタンパク質 □蛍光タンパク質 □録光タンパク質 □緑色蛍光タンパク質 □科・カク質 □ルシフェラーゼ □グルタチオン S-トランスフェラーゼ 融合タンパク質(GST 融合タンパク質) □ヒスチジンタグ融合タンパク質(His タグ融合タンパク質)	□ HA タグ □ FLAG タグ □ ツーハイブリッド法 □ 発現タンパク質の検出・分析 □ 大腸菌 B 株 □ タンパク質分泌機構 □ PET システム □ PGEX システム □ タンパク質の発現誘導 □ lac プロモーター □ 封入体(インクルージョンボディー)

分野「	項目	内容	キーワード		
		核酸の抽出・精製	□カオトロピック試薬 □チオシアン酸グアニジン □塩酸グアニジン □フェノール・クロロホルム □エタノール沈殿(アルコール沈殿) □ Tris-HCl 緩衝液	□ジエチルピロカーボネート (DEPC) □酸性飽和フェノール溶液 (水飽和フェノール溶液) □中性飽和フェノール溶液 (トリス飽和フェノール溶液)	
	生体高分子の取扱い	タンパク質の分離・ 精製	□ ゲルろ過クロマトグラフィー □ 高速液体クロマトグラフィー (HPLC) □ アフィニティークロマトグラフィー □ イオン交換クロマトグラフィー □ 逆相クロマトグラフィー	□ 順相クロマトグラフィー □ 吸着クロマトグラフィー □ 疎水性クロマトグラフィー □ ヒドロキシアパタイトクロマトグラフィー	
		酵素反応速度論	□基質親和性 □基質特異性 □リガンド □ミカエリス・メンテンの式 □ミカエリス定数 (Km) □ラインウィーバー・バークの式 (ラインウィーバー・バークプロット)	□ ランダム機構 □ 定序逐次機構 □ ピンポン機構 □ カスケード制御 □ カスケード反応 □ カタボライトリプレッション	
生化学	酵素の性質	酵素活性	□ 触媒部位 □ は	□加水分解酵素 (ハイドロラーゼ) □加水分解酵素 (リアーゼ) □開催化酵素 (リアーゼ) □角成酵素 (リガーゼ) □輸送酵素 (トランスロカーゼ) □ペプシノーゲン □トリプシノーゲン □トリプシン □キモトリプシン □キモトリプシン □オラスターゼ □プロトロンビン □トリプシンインヒビター □食品工業用酵素 (アミラーゼ、グルタニナーゼなど) □飼料用酵素 (セルラーゼ、ヘミセルラーゼ、ベクチナーゼなど) □満剤用酵素 (セルラーゼ、アミラーゼ、リパーゼなど) □繊維加工用酵素 (セルラーゼ、ラッカーゼなど) □繊維加工用酵素 (セルラーゼ、ラッカーゼなど) □紙・パルブ関連酵素 (キシラナーゼ、パルブ関連酵素 (キシラナーゼ、パルーゼなど)	

核酸・タンパク質

分野	項目	内容	+	フード
		アミノ酸の構造と 性質	□ ペプチド □ 親水性	□疎水性 □等電点(pl)
生化学	アミノ酸・タンパク質の構造	タンパク質の構造と機能	□ペプチド結合 □水素結合 □ボスルフィド結合 □ジスルフィド結合 □ジスルフィド結合 □二次構造 □三次構造 □三次株構造 □高次構造 □の高次構造 □のお表さりのである。 □ののは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は	□金属タンパク質 □リポタンパク質 □糖タンパク質 □酵素 □構造タンパク質 □輸送タンパク質 □輸送タンパク質 □輸送タンパク質 □貯蔵タンパク質 □分み子シャペロン □熱ショックタンパク質 □受容体タンパク質 □受容体タンパク質 □受容体タンパク質 □ボルモン受容体 □ボルモン受容体 □ボックで質 □ボルモン受容体 □ボックで変体 □ボックで変
		翻訳後修飾	□翻訳後修飾 □リン酸化 □ 糖鎖付加 □シグナルペプチダーゼ □タンパク質の変性	□プロテアソーム □ユビキチン □アセチル化(ヒストン) □メチル化(ヒストン) □SUMO
	タンパク質の構造解	一次構造の解析	□ アミノ酸組成分析 □ アミノ酸配列分析 □ N 末端アミノ酸配列分析 □ C 末端アミノ酸配列分析 □ DNP 法 □ エドマン分解法 □ アミノペプチダーゼ法	□カルボキシペプチダーゼ法 □ジニトロフェニル法 □臭化シアン法 □ダンシル法 □ペプチドシークエンサー □質量分析装置 □ニンヒドリン
	造解	高次構造の解析	□二次構造予測 □チョウ・ファスマンの方法 □ドメイン □モジュール □モチーフ	□立体構造予測 □構造・機能相関 □ツーハイブリッド法 □タンパク質設計 □部位特異的変異

分野	項目	内容	キーワード		
		タンパク質の基本 的な分析法	□紫外部吸収法 □ブラッドフォード法 □ローリー法 □ビウレット法 □ BCA 法 (ビシンコニン法) □クーマシーブリリアントブルー染色 (CBB 染色)	□メチルグリーン染色□ポンソー染色□SDS-PAGE (SDS-ポリアクリルアミドゲル電気泳動)□二次元電気泳動□等電点電気泳動	
生化学	タンパク質の検出	タンパク質の標識法	□ 125 標識 □ 35S メチオニン標識 □ 14C 標識 □ 蛍光標識 □ ビオチン標識 □ フルオレセイン □ 酵素標識 □ HRP (Horseradish peroxidase) 標識 □ AP (アルカリホスファターゼ) 標識 □ 架橋剤 (クロスリンカー) □ 遊離 SH 基を介した架橋 □ タグタンパク質	□ 蛍光タンパク質 □ 緑色蛍光タンパク質 □ 緑色蛍光タンパク質 □ パシフェラーゼ □ グルタチオン S-トランスフェラーゼ 融合タンパク質(GST 融合タンパク質) □ ヒスチジンタグ融合タンパク質(His タグ融合タンパク質) □ Myc タグ □ HA タグ □ FLAG タグ	
		抗体を用いた検出法など	□ポリクローナル抗体 □モノクローナル抗体 □ウェスタンブロット法 □酵素抗体法 □蛍光抗体法 □イムノブロット法 □免疫染色 □免疫沈降法	□ 酵素免疫測定 □ 免疫電気泳動法 □ ELISA(エンザイムイムノアッセイ、EIA、enzyme-linked immunosorbent assay) □ p- ニトロフェニルリン酸 □ ラジオイムノアッセイ(RIA)	
応用発展	網羅的解析	バイオインフォマテ ィクス	□データベース □国際塩基配列データベース (INSDC) □ DDBJ (Data Bank of Japan) □ ENA (European Nucleotide Archive) □ NCBI (The Natural Center for Biotechnology Information) □ BLAST検索 □ FASTA検索 □ アノテーション □ アラインメント □ コンセンサス配列	□ホモロジー検索 □相同性検索 □モチーフ検索 □ゲノムプロジェクト □トランスクリプトーム □マイクロアレイ □DNA チップ □プロテオーム(プロテオミクス) □メタボローム(メタボロミクス) □次世代シークエンサー □オーム解析 □ Chlp-seq 解析 □ RNA-seq 解析	
	トピックス	先端技術と生物資源	□ 酵素センサー □ バイオセンサー □ 固定化酵素 □ 固定化生体触媒 □ 遺伝資源 □ 遺伝子バンク(ジーンバンク) □ cell-freeDNA(cfDNA)	□ RNAi(RNA 干渉) □ RNA サイレンシング □ 光遺伝学 □ ゲノム編集 □ アプタマー □ エキソソーム(exosome)	

安全管理

分野	項目	内容	+	フード
		カルタヘナ法	□カルタヘナ議定書	□遺伝子組換え実験
			□ LMO (living modified organisms)	□実験分類
			□生物多様性影響	□核酸供与体
			□生物多様性影響評価書	□供与核酸
			□生物多様性条約	□同定済核酸
			□情報提供	□宿主
			□生物多様性影響評価実験要領	ロベクター
			□微生物使用実験	□認定宿主 - ベクター系
			□大量培養実験	□実験区域
			□動物作成実験	□特定網室
			□動物使用実験	□特定飼育区画
			□動物接種実験	□特定認定宿主 - ベクター系
			□ 植物作成実験 □ 植物接種実験	□ 大臣確認 □ 拡散防止措置
			□植物等使用実験	□ 温伝子組換え生物
			□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	□ 退仏丁祖揆を主彻
			□細胞融合実験	□遺伝子組換え実験安全委員会
			□ ウイルス	□安全主任者
			ロウイロイド	- スエエは B - □ 生物多様性基本法
			- □ 伝播性	□生物資源
			□病原性	□遺伝資源
規			□飛散性	□遺伝素材
則	注		□交雑性	□持続可能な利用
ー ガ	法律		□ クラス1	□ バイオテクノロジー
1			□ クラス2	□遺伝子バンク(ジーンバンク)
5	指針		□ クラス3	□名古屋議定書
規則・ガイドライン			□ クラス4	□ ポジションペーパー
_			□第一種使用等	□ セルフクローニング
			□第二種使用等	□ ナチュラルオカレンス
		実験施設の安全と	□ Good Laboratory Practice	□病原性ウイルス
		管理	(GLP)	□病原性細菌
			□無菌室	□ バイオセーフティレベル(BSL)
			ロバイオハザード	ロリスクグループ
		放射線安全管理	□放射線	□ γ線
			□放射性核種	□生体に及ぼす影響
			□放射線単位	□放射線障害
			□グレイ	□外部被ばく
			ロシーベルト	□内部被ばく
			ロベクレル	□放射線取扱主任者(第一種、第
			□吸収線量	二種)
			□線量当量	□放射線管理区域
			□半減期	□放射性廃棄物の処理
			□β崩壊	ロサーベイメーター
			□電離放射線	□液体シンチレーションカウンター
			□電磁放射線	ロジンチレーター
			口の線	ロラジナルミノグラフィー
			□β線	□ ラジオルミノグラフィー
			□中性子線	□オートラジオグラフィー

安全管理

分野	項目	内容	+	フード
規則		バイオハザード対 策	□安全キャビネット □ HEPA フィルター	□ エアロゾル □ クリーンベンチ
	実験室	機器・設備の使用 管理	□ P1 レベル □ P1A レベル □ P1P レベル □ P2 レベル □ P2A レベル □ P2P レベル	□ P3 レベル □ P3A レベル □ P3P レベル □ LSC レベル □ LS1 レベル □ LS2 レベル
		毒物·劇物	□ LD ₅₀ □ 亜急性毒性 □ 急性毒性	□慢性毒性 □催奇形性 □神経毒
	試薬	変異原·毒性物質	□紫外線 □電離放射線 □アルキル化 □変異原物質(突然変異誘発物質) □化学変異原(化学的突然変異誘発 発物質)	□メチルメタンスルホン酸 □ アクリジンオレンジ □ ニトロソグアニジン
実験の安全性	試 料· 材 料	化学物質の取扱い	□吸湿性 □揮発性 □保管(保存) □廃棄	□ 過酸化水素 □ ナトリウム □ SDS(safety data sheet、安全 データシート)
	実験者	実験者の安全	□気体 (蒸気) □皮膚の保護 □眼の保護 □白衣 □グローブ	□地震対策 □事故対策 □汚染対策(除染の方法) □ドラフトチャンバー
	倫理	倫理	□バイオエシックス □動物愛護法(動物の愛護及び管理に関する法律) □研究倫理	□生命倫理 □個人情報の保護 □研究の報告・発表

バイオ機器

分野	項目	内容	+	フード
	基本的な実験器具・基本的な測定原理	試料調製·汎用機 器	□フレンチプレス □細胞破砕 □超音波処理 □磨砕 □無細胞抽出液 □凍結乾燥機 □マイクロピペット(マイクロピペッタ ー) □ホモジナイザー(ポッター型、ダウンス型) □凝集反応 □抗血清	□沈降反応 □免疫電気泳動法 □酵素標識抗体法 □ラジオイムノアッセイ(RIA) □イムノブロット法 □ ELISA(エンザイムイムノアッセイ、EIA、enzyme-linked immunosorbent assay) □免疫染色 □ in situ ハイブリダイゼーション □モノクローナル抗体
汎用実験機器・器具	汎用分離分析技術	クロマトグラフィー	□ゲルろ過クロマトグラフィー □高速液体クロマトグラフィー (HPLC) □アフィニティークロマトグラフィー □イオン交換クロマトグラフィー □がスクロマトグラフィー □逆相クロマトグラフィー □順相クロマトグラフィー □吸着クロマトグラフィー □弥水性クロマトグラフィー □分配クロマトグラフィー □等電点クロマトグラフィー (クロマトブラフィー) □キョニクロマトグラフィー □キョニクロマトグラフィー コオーカシング)	□ 薄層クロマトグラフィー (TLC) □ 担体 □ リガンド □ 固定 ■ 移動相 □ 拡散係数 □ 分離能 □ 理論段数 □ 塩析法 □ 限外ろ過 □ 等電点析出法
		電気泳動装置・遠心機	 □電気泳動法 □キャピラリー電気泳動法 □無担体電気泳動法 □ポリアクリルアミドゲル電気泳動法 □ディスク電気泳動法 □両性電解質 □等電点電気泳動法 (アイソエレクトリックフォーカシング、IEF) □SDS-PAGE □二次元電気泳動法 	□パルスフィールドゲル電気泳動法 □変性剤濃度勾配ゲル電気泳動法 (DGGE) □免疫電気泳動法 □密度勾配遠心 □CsCI密度勾配遠心 □スベドベリ単位(S) □沈降係数 □沈降平衡
		質量分析などの機 器分析	□ 核磁気共鳴(NMR) □ X 線回折法 □ X 線結晶解析(X 線結晶構造解析) □ 円二色法(円偏光二色法、CD、円二色性スペクトル)	□質量分析法(MS) □質量分析装置 □ガスクロマトグラフ質量分析計 (GC/MS) □ペプチドシークエンサー □ DNA シークエンサー

分野	項目	内容	+	フード
汎用実験機器・器具	汎用分離分析技術	光学機器など	□ランベルト・ベールの法則 □吸光度 □透過率 □分子吸光係数(吸光係数、モル吸光係数) □核磁気共鳴(NMR) □吸収スペクトル □蛍光スペクトル □赤外吸収スペクトル	□フーリエ変換赤外分光光度計 (FTIR) □紫外吸収スペクトル □ラマンスペクトル □蛍光分析 □原子吸光分析 □クエンチング(消光) □マルチプレートリーダー
		細胞·組織培養関 連機器	□ フローサイトメトリー □ セルカウンター	□ エレクトロポレーション装置 □ CO ₂ インキュベーター
応用分	培養技術	顕微鏡	□光学顕微鏡 □蛍光顕微鏡 □実体顕微鏡 □関立顕微鏡 □倒立顕微鏡 □位相差顕微鏡 □微分干渉顕微鏡 □レーザー顕微鏡 □共焦点レーザー顕微鏡	□電子顕微鏡 □走査型電子顕微鏡 □透過型電子顕微鏡 □超音波顕微鏡 □STED顕微鏡 □2光子励起顕微鏡 □分解能
応用分析機器	高帝	画像解析など	□画像解析□解像度□イメージアナライザー□画像処理	□画像診断 □ 超音波ドップラー法 □ マイクロアレイ
		解析ソフトと情報 機器	□ NIH Image(NIH イメージ) □ピクセル	□ RGB 画像
	技術	最新技術関連装 置	□次世代シークエンサー □シングルセルイメージング □表面プラズモン共鳴(タンパク質 - 核酸相互作用解析装置)	□自動細胞培養装置 □ ライブセルイメージング □ プロテインチップ

分野	項目	内容	+	フード
基礎微生物バイオ	微生物の構造と構成成分	微生物・ウイルスの 構造 微生物の構成成 分	□球菌 □ 桿菌 □ らせん菌 □ 糸状細菌 □ 細胞膜 □ ペリプラズム □ 線毛 □ 性線毛 □ 性線毛 □ 位 クルコアミラーゼ □ グルコースイソメラーゼ □ グルコースオキシダーゼ □ ジクロデキストリン合成酵素	□ 鞭毛 □ 芽胞 □ DNA ウイルス □ RNA ウイルス □ カプシド □ ヌクレオカプシド □ エンベロープ □ 一次菌糸 □ 二次菌糸 □ セルラーゼ □ プロテアーゼ □ ラクターゼ □ リパーゼ □ 凝乳酵素(レンネット)
	細胞機能	ゲノムと核外因子	□プラスミド伝達 □ Ri プラスミド □ Ti プラスミド	□トランスポゾン □プロウイルス □ロタウイルス
	機能・ゲノム	遺伝子発現調節	□ オペロン □ シストロン □ ポリシストロン □ -35 配列 □ σ因子	□ ρ因子 □ ラクトースオペロン □ オペレーター □ リプレッサー □ プリブナウボックス(-10 配列)

分野	項目	内容	キーワード		
基礎微生物バイオ	分類・代謝・発酵・生理	学的特徴 (光を含む)	□学名 □ 対 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	□ Aspergillus oryzae □ Bacillus (B. subtilis) □ Escherichia (Escherichia coli) □ Pseudomonas (P. aeruginosa) □ Staphylococcus (S. aureus) □ Streptococcus □ Streptomyces □ Lactobacillus □ Lactococcus □ Leuconostoc □ Saccharomyces cerevisiae □ ヘルペスウイルス □ エイズウイルス □ エイズウイルス □ エイズウイルス □ エイズウイルス □ エイズウイルス □ エイズウイルス □ アデノウイルス □ ドガウイルス □ プリオン □ つ次代謝 □ 常籍系 □ 合成系 □ 合成系 □ 微化的リン酸化 □ 栄養素源 □ 微量要素 □ 無機塩類 □ 抗力イルス剤 □ 抗菌スペクトル □ 抗真菌剤 □ 抗生物質	
	生殖・育種・遺伝	突然変異	□従属栄養 □環境変異原 □エイムス試験 □変異原物質(突然変異誘発物質) □変異株のスクリーニング □復帰突然変異 □欠失変異	□ミスセンス変異 □ナンセンス変異 □フレームシフト変異 □挿入変異 □点突然変異	

分野	項目	内容	+	フード
基礎微生物バイオ	生殖・育種・遺伝	変異と遺伝	□ 細菌の形態変化(鞭毛・線毛・莢膜の消失) □ コロニーの変化(S からR への変異、R からS への変異、H からO への変異) □ 抗原性の変化(相変異) □ 酵母の相補性 □ 出芽酵母	□分裂酵母 □酵母の接合型 □宿主域変異(ウイルス) □弱毒変異(ウイルス) □抗原変異(ウイルス) □薬剤感受性変異(ウイルス) □塩基置換速度(塩基置換率)
	培養・	培養と増殖	□温度 □溶存酸素量 (DO) □PH □完全培地 □品少培地 □LB 培地 □半流動培地 □MRS 培地 □高層培地 □炭素源 □通気培養 □振とう培養	□バッチ式 □連続培養法 □生菌数測定法 □培養装置 □ 培養装置 □ ジャーファーメンター □ ケモスタット □ 増殖曲線 □ 誘導期 □ 対数増殖期 □ 定常期 □ 死滅期
微生物パイオ技術	増殖・発生	ファージ・ウイルスの 感染・薬剤耐性	□β - ラクタム系抗生物質 □アンピシリン □エリスロマイシン □カナマイシン □クロラムフェニコール □ストレプトマイシン □セファロスポリン □ テトラサイクリン □マクロライド系抗生物質 □菌交代症 □多剤耐性菌 □溶原化 □ファージの誘発	□溶原性ファージ(テンペレートファージ) □シアリダーゼ(ノイラミニダーゼ (NA)) □赤血球凝集素(ヘマグルチニン(HA)) □エンベロープ □ウイルスレセプター □インフルエンザウイルス □ポリオウイルス □ロタウイルス □ HIV 外膜タンパク質 Env (gp120、gp41)
	実験管理・実験手技・安全管理	病原性·食中毒	□ウエルシュ菌 □エルシニア属菌 □黄色ブドウ球菌 □カンピロバクター □サルモネラ属菌 □陽炎ビブリオ菌 □陽管出血性大腸菌 O-157 □ボツリヌス菌 □ A 型肝炎ウイルス □ノロウイルス □化学物質食中毒	□自然毒食中毒 □糖発酵性 □耐性 □最小阻止濃度 (MIC) □ウイルス薬剤感受性試験 □毒素 □内毒素 (エンドトキシン) □発熱物質 (パイロジェン) □外毒素

分野	項目	内容	キーワード		
		微生物の取扱い	□滅菌法	□ pH	
			□滅菌	□ 完全培地	
			│□火炎滅菌	□最少培地	
			- ころ // / / / /	□炭素源	
	実		□乾熱滅菌	□通気培養	
	管		│□高周波滅菌	□振とう培養	
	実験管理・実験手技		□紫外線殺菌	□培養法	
	宝		□放射線滅菌	ロバッチ式	
	験		□ろ過滅菌	□連続培養法	
	手		- □高圧滅菌(高圧蒸気滅菌)	□生菌数測定法	
	技・		□消毒	□培養制御	
	安		- /6# □ オートクレーブ	□培養装置	
	・安全管理		_ □ 除菌フィルター	ロジャーファーメンター	
reter.	垣		□温度	□ ケモスタット	
微生			□溶存酸素量(DO)		
微生物バイオ技術		実験施設	□ Good Industrial Large-Scale Practice (GILSP)		
_オ			, , ,		
技		組換え実験基礎	□遺伝子組換え実験	□ボイリング法(プラスミド抽出・精	
1/1/1			□形質転換(トランスフォーメーション)	製)	
			ロコンピテントセル	□組換えタンパク質	
			□塩化カルシウム法(Hanahan 法)	□α相補性	
	40		□塩化ルビジウム法	□ lacZ 遺伝子	
	組物		ロエレクトロポレーション	□β-ガラクトシダーゼ	
	え		□アルカリ法(プラスミド抽出・精製)		
	組換え実験基礎	宿主とベクター	□宿主	□ EK1	
	・ ・ 基		ロベクター	□ EK2	
	礎		□認定宿主ベクター系	□ SC1	
			□ 特定認定宿主ベクター系	□ SC2	
			□ B1	□実験分類	
			□ B2	□核酸供与体	
			□ BS1	□供与核酸	
			□ BS2	□同定済核酸	

分野	項目	内容	+	フード
	有用微生物の応用	バイオ医薬品・ 食品・食品添加物	□ 酵素 □ ホルモン(インスリン、成長ホルモン、レプチン) □ 血液凝固因子 □ アルブミン □ ワクチン	□インターフェロン □エリスロポエチン □サイトカイン □抗体 □食品添加物(アミラーゼ、キモシン、 リボフラビン、ヒスチジン)
応用微生物バイオ		有用微生物	□ Acetobacter 属 □ Aspergillus oryzae □ Bacillus subtilis □ Corynebacterium 属 □ Lactobacillus casei □ Lactobacillus plantarum □ Lactococcus lactis □ Leuconostoc mesenteroides □ Penicillium chrysogenum □ Rhizobium 属	□ Rhizopus oryzae □ Saccharomyces cerevisiae □ Streptomyces griseus □ Streptomyces rubiginosus □ Streptomyces venezuelae □ Thiobacillus 属 □ Trichoderma viride □ 陽内細菌叢 □ プロバイオティクス
物バイオー	環境への応用	環境微生物	□ 好アルカリ菌 □ 好塩菌 □ 好酸菌	□好熱菌□好冷菌
		環境問題とその浄化	□生物化学的酸素要求量(BOD) □化学的酸素要求量(COD) □活性汚泥法 □薬剤耐性機構 □金属耐性機構 □窒素固定 □バイオポリマー	□バイオレメディエーション □バイオスティミュレーション □バイオオーグメンテーション □バクテリアリーチング □微生物農薬 □バイオアッセイ
	トピックス	極限環境微生物など	□好アルカリ菌 □好塩菌 □好酸菌 □好熱菌 □好冷菌	□固定化微生物 □メタゲノミクス □ゲノムの化学合成 □人工細胞 □合成生物

分野	項目	内容	キーワード	
	細胞の構	動物細胞の構造	□ 赤血球 □ 単球 □ 好塩基球 □ 好的では □ 好中球 □ リンパ球 □ リンパ系幹細胞 □ ナチュラルキラー細胞 □ 造血幹細胞 □ 融合細胞 (シンシチウム) □ 細胞間接着	□ 細胞 - マトリックス間接着 □ 細胞外マトリックス □ 細胞接着(細胞結合) □ アドヘレンスジャンクション(接着結合) □ 密着結合(タイトジャンクション) □ 接着斑(デスモソーム、フォーカル・アドヒージョン) □ ギャップ結合(ギャップジャンクション)
基礎動物バイオ	細胞の構造と構成成分	構成成分と微細構造	□ 細胞小器官 □ 細胞膜 □ リン脂質 □ 膜タンパク質 □ 糖タンパク質 □ 糖脂質 □ コレステロール □ 核膜 □ 核膜 □ 核小体 □ クロマチン □ 核タンパク質	□ 細胞膜輸送系 □ 粗面小胞体 □ 滑面小胞体 □ ゴルジ体 □ ペルオキシソーム □ ミトコンドリア □ リソソーム □ マイクロフィラメント (アクチンフィラメント) □ 中間径フィラメント □ 微小管
バイオ		細胞内シグナル伝 達・がん遺伝子	□ セカンドメッセンジャー □リガンド □ G タンパク質 □リン酸化カスケード(チロシンキナー ゼ、MAP キナーゼ、PKC)	□がん遺伝子 □がん抑制遺伝子 □メタロチオネイン遺伝子
	細胞機能・ゲノム	構造タンパク質・機能タンパク質	□ロドプシン □免疫グロブリン □マクログロブリン □ミオグロビン □ミオシン □ヘモグロビン □アクチン □ ケラチン □コラスチン □カゼイン □グリシニン □α-アミラーゼ □蛇毒 □ペクチナーゼ □グルコアミラーゼ	□グルコースイソメラーゼ □グルコースオキシダーゼ □プロテアーゼ □リパーゼ □ビメンチン □ニューロフィラメント □ラミン □チューブリン □フィブロネクチン □ラミニン □グリコサミノグリカン □ヒアルロン酸 □カドヘリン □インテグリン □免疫グロブリンスーパーファミリー

分野	項目	内容	+-	ワード
		神経系·免疫系	□抗原	□主要組織適合抗原系
			□抗原決定基	□移植免疫
			□抗体	□がん胎児性抗原
			□補体	ロα-フェトプロテイン(AFP)
			□オプソニン化	□ アロタイプ
			□ マクロファージ	□ ハプロタイプ
			ロワクチン	□自律神経系
			□胸腺	□中枢神経系
			□B細胞	ロシナプス
			□免疫グロブリン	ロニューロン
			□ CD 抗原	□ ATP アーゼ
			□ CD4	□ K ⁺ チャネル
			□ CD8	□ Na ⁺ チャネル
			□ Th1 細胞	ロアセチルコリン
			□ Th2 細胞	□ アセチルコリンエステラーゼ
			□T細胞	□ アドレナリン □ カテコールアミン
			□ T 細胞受容体 □ インターフェロン	ロドーパミン
			ロインターロイキン	□┡━ハミン
			ロサイトカイン	□グルタミン酸受容体
			□サイトカイン受容体	□ 活性型ビタミン D
其			□細胞接着分子	ロインドメタシン
礎	代謝		□免疫応答遺伝子	□トロンボキサン A
動	謝・		□主要組織適合遺伝子複合体	□プロスタグランジン
基礎動物バイオ	生		(MHC)	□ プロスタサイクリン
1 オ	理	内分泌系・生理活	□ EGF	□オキシトシン
		性物質・代謝	ロインスリン	□オピオイド
			□インスリン様増殖因子	□ガストリン
			□上皮細胞成長因子	ロキニン
			□レチノイン酸	ロバソプレッシン
			□オートクリン(オートクライン、自己	ロソマトメジン
			分泌)	ロエストロゲン
			ロフィードバック	ロアクチビン
			□血液脳関門(脳血液関門)	ロインヒビン
			□卵胞刺激ホルモン	コオータコイド
			□ 絨毛性ゴナドトロピン(hCG)	ロヒスタミン
			ロゴナドトロピン	□プロスタグランジン
			ロリラキシン	ロアンギオテンシン
			□黄体形成ホルモン	ロブラジキニン
			□黄体形成ホルモン放出ホルモン	□γ-リノレン酸
			□ 黄体刺激ホルモン	□ 脂肪酸結合タンパク質 □ コレステロール合成阻害物質
			□ 胸腺ホルモン □ 甲状腺ホルモン	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
			□ 中状腺ホルモン	□プロゲステロン
			□ 戍長ホルモン □ グルココルチコイド (糖質コルチコイ	
			□ ソルココルテコ1ト(椐貝コルテコ1 ド)	□ リポタンパク質(キロミクロン、
			□副腎皮質刺激ホルモン	UNN VLDL、IDL、LDL、HDL)
			□□□□以具利成小ルしノ	VEDE, IDE, EDE, TIDE)

分野	項目	内容	キーワード		
基礎動物バイオ	生殖・発生・育種・遺伝	初期発生と細胞周期	□減数分裂 □ 減数分裂 □ 減弱原生殖細胞 □ 透明帯 □ 卵子 □ 卵巣 □ 卵母細胞 □ 類粒膜細胞 □ 極体 経験に変換 □ 異数体 □ 強を体み変換 □ 異数体 □ はのではではではである。 □ サイクリン □ ボルラジョップラグラップで質 □ ホーシスコーシス □ ネクローシス	□対対では、	
		実験動物の遺伝 的管理 	□近交系 □クローズドコロニー □交雑群	□ミュータント系 □遺伝的モニタリング	
動	培養技術	細胞・組織培養法 の基本的技術	□ ウシ胎児血清 □ 上皮細胞成長因子 □ EGF □ インスリン □ インスリン様増殖因子 □ レチノイン酸	□コルヒチン □体細胞雑種 □雑種細胞(ハイブリッド) □雑種形成 □雑種強勢 □雑種不妊	
物バイオ技術		様々な培養細胞	□ ハイブリドーマ(雑種腫瘍細胞) □ ミエローマ細胞 □ モノクローナル抗体 □ HAT 培地 □ 接着依存性細胞 □ 単層培養 □ 浮遊細胞 □ 初代培養 □ 株化細胞	□ フィーダー細胞層 □ 支持細胞層 □ 共培養 □ HeLa 細胞 □ NIH3T3 細胞 □ CHO 細胞 □ HEK293 細胞 □ COS-7 細胞 □ 3T3 マウス線維芽細胞	

分野	項目	内容	+	フード
		実験動物管理と倫理	□動物の愛護及び管理に関する法律 □飼育環境 □苦痛の軽減	□安楽死 □健康管理 □3R
	動物実験	実験動物の取扱い (主にマウス)	□ ハンドリング □ 飼育ケージ □ 給水	□採血 □薬剤投与経路 □食餌
	初	微生物学的管理・ 感染症とその対策・ 人獣共通感染症	□ コンベンショナル動物 □ SPF 動物 □ ノトバイオート □ 無菌動物	□細菌性人獣共通感染症 □ウイルス性人獣共通感染症 □咬傷・掻傷 □血液・分泌物・排泄物による汚染
動物バイオ技術	遺伝子工学・発生工学	発生工学	□ 核移植 □ 胚移植 □ 単為発生 □ 過排卵 □ 顕微授精 □ 体外受精 □ 凍結保護物質 □ 受精能獲得	□ 不妊治療 □ ES 細胞(胚性幹細胞) □ 人工多能性幹細胞(iPS 細胞、 誘導多能性幹細胞) □ クローン技術 □ 体細胞クローン □ モザイク □ キメラ □ クローン動物
	発生工学	遺伝子改変動物 の作製	□エレクトロポレーション(高電圧パルス法) □リン酸カルシウム法 □リポフェクション法 □マイクロマニピュレーター □マイクロインジェクション □ウイルスベクター	□パーティクルガン法 □ 細胞融合(電気刺激、機械刺激、 化学物質) □ センダイウイルス □ ポリエチレングリコール □ レトロウイルスベクター □ アデノウイルスベクター
	遺伝子	遺伝子改変動物	□トランスジェニック動物 □ ヌードマウス □ ノックアウトマウス	□ 老化促進モデルマウス(SAM) □ 糖尿病モデルマウス(NOD) □ 肥満マウス(ob/ob、db/db)
応用動物バイオ	遺伝子改変動物・モデル動物	モデル動物	□ Wister 系ラット □ SD ラット □ C57BL/6 マウス □ BALB/c マウス □ アグーチマウス □ 疾患モデル動物 □ 高血圧自然発症ラット(SHR) □ スーパーマウス	□ siRNA □ 遺伝子ターゲッティング □ ショウジョウバエ □ カイコ □ ゼブラフィッシュ □ マーモセット □ 線虫 (<i>C. elegans</i>)
1 オ	(食肉)分野への応用医療・医薬品・食品	医薬品·食品	□ アゴニスト □ アンタゴニスト □ 抗がん剤 □ 抗炎症剤 □ 抗血栓剤 □ ワクチン □ 放射線 □ 薬剤耐性	□治験 □第I相臨床試験 □第I相臨床試験 □第Ⅲ相臨床試験 □市販後臨床試験 □ 市販後臨床試験 □ 二重盲験法 □プラセボ

分野	項目	内容	+	フード
応用動物バイオ	(食肉) 分野への応用 医療・医薬品・食品	遺伝子関連情報と倫理	□遺伝子診断 □遺伝子診療 □インフォームドコンセント □カウンセリング □クローン技術 □セルソーター □バオ子鑑定 □性判別 □ダウン症候群 □ターナー症候群 □クラインフェルター症候群 □は病。□フェニルケトン尿症 □鎌状赤血球貧血 □光線過敏症 □高カルシウム血症	□ トリプレットリピート病 □ 後天性免疫不全症候群(AIDS) □ 成人 T 細胞白血病(ATL、adult T-cell leukemia) □ ウイルス性肝炎 □ インフルエンザ □ アレルギー □ バセドウ病 □ 膠原病 □ 顆粒球減少症 □ エールリッヒ腹水がん □ 家族性大腸ポリポーシス □ 家族性乳がん □ 前立腺がん □ 慢性骨髄性白血病 □ ABO 血液型
	トピックス	先端技術・トピック ス	□ 再生医療 □ cell-freeDNA(cfDNA)	□新型出生前診断 □エキソソーム(exosome)

分野		内容	+	フード
	植物の分類と構造	植物の種類と構造	□種子植物 □裸子植物 □被子植物 □双子葉類 □単子葉類 □葉脈 □維管束 □根	□基本組織系 □分裂組織 □茎 □葉・子葉 □花弁 □胚軸 □花序 □花芽
	類と構造・細胞の構造	植物細胞の微細構造	□ 細胞壁 □ 滑面小胞体 □ 粗面小胞体 □ リボソーム □ リンソーム □ ペルオキシソーム (ミクロボディー) □ 葉緑体 □ チラコイド □ グラナ □ ラメラ □ ストロマ	□表皮系 □維管束系 □色素体 □プラスチド □アミロプラスト (デンプン体) □ミトコンドリア □クリステ □マトリクス □原核型リボソーム (ミトコンドリア、 葉緑体) □真核型リボソーム (細胞質)
基礎植物バイオ	細胞機能・従	光合成·光化学	□ 光合成 □ 明反応 □ 暗反応 □ 炭酸固定(炭酸同化) □ TCA 回路(クエン酸回路) □ カルビン・ベンソン回路 □ 電子伝達系 □ 還元的ペントースリン酸回路 □ ATP 合成酵素 □ プロトンポンプ □ C ₃ 植物 □ C ₄ 植物 □ 維管束鞘細胞	□オキサロ酢酸 □ホスホエノールピルビン酸 □栄養生殖 □アデノシン三リン酸(ATP) □リブロースビスリン酸カルボキシラーゼ(ルビスコ) □カルボキシジスムターゼ □カロテン(カロチン) □カロテノイド(カロチノイド) □クロロフィル □キサントフィル □空素同化 □CAM 植物
	・ゲノム	ゲノムと細胞分裂	□ 倍数体 □ 異数体 □ 三倍体 □ X 染色体 □ Y 染色体 □ 戻し交雑 □ 母性遺伝 □ 遺伝子 □ 細胞質遺伝子 □ コルヒチン □ サテライト RNA	□染色体ウオーキング(染色体歩行) □アンチセンス RNA □ 35S プロモーター □ RNA ポリメラーゼ □ イントロン □ エキソン □ キャップ構造 □ ポリ(A) □ ウェスタンブロッティング □ ミトコンドリア DNA □ 滅数分裂

分野	項目	内容	+	フード
	代謝・	栄養素・二次代謝 産物・植物構成成 分	□ 食物繊維 □ セルロース □ ビタミン □ β - カロテン □ ミネラル □ アルカロイド □ テルペノイド	□ サポニン □ ポリフェノール □ レスベラトロール □ メラニン □ オメガ -3 脂肪酸 □ オメガ -6 脂肪酸
基礎植物バイオ	発酵・生理	植物ホルモン	□ 2,4-ジクロロフェノキシ酢酸(2,4-D) □ アブシシン酸 □ インドール酢酸(IAA) □ インドール酪酸(IBA) □ エチレン □ オーキシン □ カイネチン(キネチン)	□ サイトカイニン □ ジベレリン □ ゼアチン □ ナフタレン酢酸(NAA) □ ブラシノリド(ブラシノライド) □ ベンジルアデニン(合成サイトカイニン)
オ	生殖・育種・遺伝	配偶子形成と初期 発生	□減数分裂 □花粉 □花粉母細胞 □極核 □助細胞 □精細胞 □中央核	□ 反足細胞 □ 卵細胞 □ 胚のう □ 胚乳 □ 雄性不稔 □ 自家不和合性
		遺伝育種·変異誘導·品種改良	□ハイブリッド(雑種細胞) □サイブリッド(細胞質雑種) □雑種強勢(ヘテロシス) □細胞質雄性不稔	□ 雑種不稔性□ 千宝菜□ ハクラン

分野	項目	内容	キーワード	
分野 植物バイオ技術 野	培養・増殖・発生	細胞・組織培養の基本的技術	□全能性 □脱分化 □外植体 □外を (胚様体) □水で (胚様体) □水で (胚様体) □水で (胚様体) □は (上では、上では、上では、上では、上では、上では、上では、上では、上では、上では、	□ 不定根分化 □ 苗条原基 □ 葉原基 □ 藤芽 □ 整頂分裂組織 □ 多芽体 □ 鱗片 □ 試験管内受精 □ 十数体 □ ウイルスフリー苗 □ ウイルススフリー苗 □ ウイルススプリー苗 □ ウイルス 検定 □ メリクロン □ プロトコーム様体 (PLB) □ クローン植物 □ 大量増殖法 □ 馴化(順化) □ コルヒチン処理
	培養・増殖・発生	様々な組織培養法	□ 茎頂培養 □ 成長点培養 □ 花粉培養 □ 葯培養 □ 胚培養	□ 毛根培養 □ 子房培養 □ 組織片培養 □ 器官培養 □ カルス培養 □ クローン植物
		分化誘導・プロトプ ラスト	□プロトプラスト □ 葉肉細胞 □セルラーゼ	□ ペクチナーゼ □ へミセルラーゼ □ ポリガラクツロナーゼ
	実験管理・安全管理	遺伝子検査など	□ウイルスフリー検定 □ RAPD 法(random amplified polymorphic DNA) □ RFLP(制限酵素断片長多型、 restriction fragment length polymorphism) □ 産地同定	□アイソザイム □品種同定 □品種・系統識別 □マーカー遺伝子 □ AFLP(増幅断片長多型、 amplified fragment length polymorphism)
		圃場·実験安全管 理	□ 特定網室 □ 隔離圃場 □ 非閉鎖系温室 □ 閉鎖系温室 □ 弱毒ウイルスと干渉作用 □ キュウリモザイクウイルス (CMV)	□タバコモザイクウイルス(TMV) □ズッキー二黄斑モザイクウイルス (ZYMV) □パパイヤ輪点ウイルス(PRSV) □有害植物 □食中毒

分野	項目	内容	キーワード	
植物バイオ技術	境に子導入・発現ベクター・細胞融合は	組換え実験・細胞融合	□エレクトロポレーション(高電圧パルス法) □ポリエチレングリコール法(PEG法) □マイクロマニピュレーター □マイクロインジェクション □ウイルスベクター □パーティクルガン法(パーティクルボンバードメント法) □細胞融合 □プロトプラスト調製 □異核共存体(ヘテロカリオン) □遺伝的安定性 □宿主 - ベクター系 □リゾビウム・ラジオバクター(アグロバクテリウム・リゾゲネス)[Rizobium radiobacter(Agrobacterium tumefaciens)] □リゾビウム・リゾゲネス(アグロバクテリウム・リゾゲネス)[Rizobium rhizogenes(Agrobacterium thizogenes)] □カリフラワーモザイクウイルス(CaMV) □タバコモザイクウイルス(PRSV) □パイナリーベクター □クラウンゴール	□ Ti プラスミド □ T-DNA □ Ri プラスミド □ vir 領域 □ 毛状根 □ マンノピン □ アセトシリンゴン □ オクトピン □ オパイン (オピン) □ ノパリン □ カリオプラスト (核体) □ サイトプラスト (細胞質体) □ サブプロドブラスト □ 細胞質体 □ 対称融を合 □ 非対称融を合 □ 非対称融を合 □ 非対称融を合 □ 非対称融を合 □ 非対を表表 □ リードア・ディーの方と □ リー・デール □ リー・デール □ リー・デール □ カリー・デール □ カリー・ブランスフェラー・で遺伝子 □ ネオマイシンホスフォトランスフェラー ゼ遺伝子
		第一種組換え実験	□ フレーバーセーバー □ 低アレルゲン米 □ 氷核細菌 □ Pseudomonas (シュードモナス) □ トランスジェニック植物 □ グリホサート □ Bacillus thuringiensis (Bt 菌) □ アトラジン □ 5- エノールピルビルシキミ酸 -3- リン酸合成酵素	□ 氷核活性タンパク質遺伝子 □ ポリガラクツロナーゼ遺伝子 □ β - グルクロニダーゼ遺伝子(GUS 遺伝子) □ 矮化遺伝子 □ 殺虫性タンパク質(Bt トキシン) □ ウイルス外被タンパク質(ウイルスコートタンパク質)

分野	項目	内容	キーワード	
応用植物バイオ	療の所用	食品・作物の開発	□高栄養価作物	□除草剤耐性
		医療·医薬品開発	□経口ワクチン	□経口インターフェロン
	環境への応用	環境浄化への応 用	□バイオマス□バイオレメディエーション (環境修復)□野外利用	□生物濃縮 □共生関係 □共生生物 □ PLA 樹脂
		地球環境と植物	□窒素固定 □炭素固定 □炭素循環 □窒素循環 □リン循環 □環境影響評価 □リスクアセスメント □地球環境問題	□地球温暖化 □オゾン層 □オゾン層破壊 □NO _x □SO _x □富栄養化 □生態系影響評価
	トピックス	先端技術・トピック ス	□ 植物工場 (アグロファクトリー) □ 人工種子 □ バイオ燃料 □ バイオ水素 (バイオガス) □ 共生菌 (シロアリ)	□油産生緑藻(Botryococcus braunii) □生分解性プラスチック □高 GABA トマト □スギ花粉症緩和米 □ゲノム編集